Spin-torque diode radio-frequency detector with voltage tuned resonance
نویسندگان
چکیده
منابع مشابه
Noise properties of a resonance-type spin-torque microwave detector
We analyze performance of a resonance-type spin-torque microwave detector (STMD) in the presence of noise and reveal two distinct regimes of STMD operation. In the first (high-frequency) regime the minimum detectable microwave power Pmin is limited by the low-frequency JohnsonNyquist noise and the signal-to-noise ratio (SNR) of STMD is proportional to the input microwave power PRF. In the secon...
متن کاملTorque detected broad band electron spin resonance.
We present a novel technique to measure high frequency electron spin resonance spectra in a broad frequency range (30-1440 GHz) with high sensitivity. We use a quasioptical setup with tunable frequency sources to induce magnetic resonance transitions. These transitions are detected by measuring the change in the magnetic torque signal by means of cantilever torque magnetometry. The setup allows...
متن کاملRadio Frequency-micro Electromechanical System Switch with High Speed and Low Actuated Voltage
This paper presents a novel RF MEMS (Micro Electromechanical System) fixed-fixed switch for very fast switching. Using the obtained equations, the switching time depends on the stiffness and effective mass of the switch beam so that the switching time will be decreased by higher stiffness (spring constant) and lower effective mass. In new design, the suspension bridge is a three-layer beam so t...
متن کاملSpin-torque ferromagnetic resonance induced by the spin Hall effect.
We demonstrate that the spin Hall effect in a thin film with strong spin-orbit scattering can excite magnetic precession in an adjacent ferromagnetic film. The flow of alternating current through a Pt/NiFe bilayer generates an oscillating transverse spin current in the Pt, and the resultant transfer of spin angular momentum to the NiFe induces ferromagnetic resonance dynamics. The Oersted field...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Physics Letters
سال: 2014
ISSN: 0003-6951,1077-3118
DOI: 10.1063/1.4893463